2.5D PIC modeling of rotating structures in a magnetized plasma column

G. Fubiani

GREPHE/LAPLACE University of Toulouse (Paul Sabatier) 31062 Toulouse, France gwenael.fubiani@laplace.univ-tlse.fr

Plasma column 1.5 m in length

- Particle losses along the 3rd dimension evaluated analytically
- Mesh is 2-dimensional
 - Plasma properties along vertical axis hence not calculated
- Solely electrons are heated by an external power source
- Power absorption profile is gaussian
- Electron velocity is updated as v= v_{old} + Δv
 - Δv is sampled from a Maxwellian with T_{eff} = 2/3 P_{abs}/eN_mv_h
 - Effect on the EEDF: $\langle v \rangle = \langle v_{old} \rangle$ and $\langle v^2 \rangle = \langle v_{old}^2 \rangle + \langle \Delta v^2 \rangle$
 - Electrons do not artificially cross magnetic field lines that way
- Column of $10 \times 10 \times 100$ cm³ in the model
- -10V at the end-plates
- Simplified chemistry: Electrons and H₂⁺ ions. Cross-sections from LXCAT
- Loss term for ions is added. Neutral gas density is 10²⁰ m⁻³
- Algorithm parallelized with OpenMP and MPI. Multigrid solver for Poisson

Observation of large scale rotating structures in the model

Evolution of the rotating structures over time

Laplace Current on the LHS wall vs. magnetic field strength

 Ionization and elastic collisions against neutrals for both electrons and ions

Comparison 2.5D PIC vs. fluid modeling (work in progress)

The fluid model is developed by G. Hagelaar

Rotating structures are also observed in inert gases (Helium here)

- What does destabilize the plasma?
 - Not Simon-Hoh because the pressure gradient and E-field are anti-parallel
- The instability has large scale structures the size of the simulation domain
 - The temperature gradient is large
 - Non-linear regime
 - Hence difficult to identify its type using standard analytical techniques
- What about losses on the end-plates? (vertically along the magnetic field lines)
 - Electron and ion losses are not equal
- Will perform scans vs. ion mass and magnetic field strength
- We are also investigating the effect of ionization on the arms

